Solve the equation over the interval [0,2pi)?

#2cos2x+2cosx=0#

2 Answers
Mar 4, 2018

The solutions are #x=pi/3,pi,(5pi)/3#

Explanation:

Use this identity:

#cos2x=2cos^2x-1#

Now, here's the actual problem:

#2cos2x+2cosx=0#

#2(color(red)(cos2x))+2cosx=0#

#2(color(red)(2cos^2x-1))+2cosx=0#

#color(red)(4cos^2x-2)+2cosx=0#

#4cos^2x+2cosx-2=0#

#4(cosx)^2+2cosx-2=0#

Substitute #u# for #cosx#:

#4u^2+2u-2=0#

#2u^2+u-1=0#

#(2u-1)(u+1)=0#

#u=1/2,-1#

Put #cosx# back in for #u#:

#cosx=1/2, qquadcosx=-1#

#x=pi/3,(5pi)/3, pi#

Hope this helped!

Mar 4, 2018

Use cos double angle identity and quadratic factoring
#x= pi/3, pi, (5pi)/3#

Explanation:

#2cos2x+2cosx=0#
#2(2cos^2x-1)+2cosx=0#
#4cos^2x-2+2cosx=0#
#4cos^2x+2cosx-2=0#
#2(2cos^2x+cosx-1)=0#
#2(2cos^2x+2cosx-cosx-1)=0#
#2(2cosx(cosx+1)-1(cosx+1))=0#
#2(2cosx-1)(cosx+1)=0#
#cosx =-1#
#cosx =1/2#
#x= pi/3, pi, (5pi)/3#