How do you integrate #3/((x-2)(x+1))# using partial fractions?

2 Answers
Mar 5, 2018

#int3/((x-2)(x+1))dx=lnabs((x-2)/(x+1))+"c"#

Explanation:

In order to integrate the function, we first use partial fractions to split the integrand

#3/((x-2)(x+1))=3 1/((x-2)(x+1))=3 ((x+1)-(x-2))/(3(x-2)(x+1))=3 (((x+1))/(3(x-2)(x+1))-((x-2))/(3(x-2)(x+1)))=1/(x-2)-1/(x+1)#

Now integrating, we get

#3/((x-2)(x+1))dx=int1/(x-2)-1/(x+1)dx=lnabs(x-2)-lnabs(x+1)+"c"=lnabs((x-2)/(x+1))+"c"#

Mar 6, 2018

#int3/((x-2)(x+1))=ln|\x-2|+ln|\1/(x+1)|+C#

Explanation:

Partial Fractions

#3/((x-2)(x+1))=A/(x-2)+B/(x+1)#

Multiply the whole equation by #(x-2)(x+1)#

#3=A(x+1)+B(x-2)#

expand the brackets

#3=Ax+A+Bx-2B#

factorise

#3=x(A+B)+A-2B#

#A+B# has to equal 0 because there is no x term for the other side
and #A-2B# has to equal 3 because those terms have no x same as 3

So

#A+B=0# #(1)#
and
#A-2B=3# #(2)#

subtract equation #(2)# from equation #(1)# to get

#0-3B=3#
#(cancel(-3)B)/cancel(-3)=-cancel((3)/3)#

#:. B=-1#

Substitute #B# for 3 in either equation #(1)# or #(2)# to get #A#

#A+(-1)=0#
#:.A=1#

or

#A-2(-1)=3#
#:.A=1#

#:. 3/((x-2)(x+1))=1/(x-2)+(-1)/(x+1)#

Integration

#int3/((x-2)(x+1))dx=int1/(x-2)+(-1)/(x+1)dx#

#int1/(x-2)+(-1)/(x+1)dx=int1/(x-2)dx+int(-1)/(x+1)dx#

#int1/(x-2)dx+int(-1)/(x+1)dx=int1/(x-2)dx-int1/(x+1)dx#

because of the constant multiple of -1

#int1/(x-2)dx-int1/(x+1)dx#

Evaluate the two integrals separately

#int1/(x-2)dx#

use u-substitution

#u=x-2#
#(du)/dx=1#

#(cancel(dx)du)/cancel(dx)=1*dx#

Bring the integral into the u world

#int1/udu#

#ln|\u|+C_1#

Bring back into the x world

#ln|\x-2|+C_1#

second integral

#-int1/(x+1)dx#

use another letter substitution so you or the marker doesn't get confused

#v=x+1#

#(dv)/dx=1#

#(cancel(dx)dv)/cancel(dx)=1*dx#

bring the integral into the v world

#-int1/vdv#

#-(ln|\v|+C_2)#

bring back into the x world

#-(ln|\x+1|+C_2)#

A negative constant, adding or subtracting a constant from another constant is still a constant so we will just make another constant

#-ln|\x+1|+C_3#

Use the log law #alog_b(c)=log_b(c^a)#

#ln|\(x+1)^-1|+C_3#

#ln|\1/(x+1)|+C_3#

put the parts of the integral that we answered back together

#ln|\x-2|+ln|\1/(x+1)|+C_1+C_3#

#:.#

#ln|\x-2|+ln|\1/(x+1)|+C#