What is the integration of #(xdx)/sqrt(1-x)#??

3 Answers

# -2/3sqrt(1-x)(2+x)+C#

Explanation:

Let, #u=sqrt(1-x)#

or, #u^2=1-x#

or, #x=1-u^2#

or, #dx=-2udu#

Now, #int (xdx)/(sqrt(1-x))=int (1-u^2)(-2udu)/u=int 2u^2du -int 2du#

Now, #int 2u^2 du -int 2du#

#=(2u^3)/3 - 2(u) +C=2/3u(u^2-3)+C=2/3sqrt(1-x){(1-x)-3} +C=2/3sqrt(1-x)(-2-x)+C#

#=-2/3sqrt(1-x)(2+x)+C#

Mar 6, 2018

#int (xdx)/sqrt(1-x) = -(2(x+2)sqrt(1-x))/3 + C#

Explanation:

Integrate by parts:

#int (xdx)/sqrt(1-x) = int x d(-2sqrt(1-x))#

#int (xdx)/sqrt(1-x) = -2x sqrt(1-x) + 2 int sqrt(1-x)dx#

#int (xdx)/sqrt(1-x) = -2x sqrt(1-x) - 2 int (1-x)^(1/2)d(1-x)#

#int (xdx)/sqrt(1-x) = -2x sqrt(1-x) - 4/3 (1-x)^(3/2) + C#

#int (xdx)/sqrt(1-x) = -2x sqrt(1-x) - 4/3 (1-x)sqrt(1-x) + C#

#int (xdx)/sqrt(1-x) = -sqrt(1-x)(2x+ 4/3 (1-x)) + C#

#int (xdx)/sqrt(1-x) = -sqrt(1-x)(2/3x+ 4/3 ) + C#

#int (xdx)/sqrt(1-x) = -(2(x+2)sqrt(1-x))/3 + C#

Mar 6, 2018

# -2/3(2+x)sqrt(1-x)+C#.

Explanation:

Let, #I=intx/sqrt(1-x)dx=-int(-x)/sqrt(1-x)dx#,

#=-int{(1-x)-1}/sqrt(1-x)dx#,

#=-int{(1-x)/sqrt(1-x)-1/sqrt(1-x)}dx#,

#=-int{sqrt(1-x)-1/sqrt(1-x)}dx#,

#=-int(1-x)^(1/2)dx+int(1-x)^(-1/2)dx#.

Recall that,

#intf(x)dx=F(x)+C rArr intf(ax+b)dx=1/aF(ax+b)+K, (a!=0)#

E.g, #intx^(1/2)dx=2/3x^(3/2)+C:.int(2-3x)^(1/2)dx=1/(-3)(2-3x)^(3/2)+K#.

#:. I=-1/(-1)(1-x)^(1/2+1)/(1/2+1)+1/(-1)(1-x)^(-1/2+1)/(-1/2+1)#,

#=2/3(1-x)^(3/2)-2(1-x)^(1/2)#,

#=2/3(1-x)^(1/2){(1-x)-3}#.

# rArr I=-2/3(2+x)sqrt(1-x)+C#.