How do you find the integral of #x^2/sqrt(4x-x^2) dx#?

1 Answer
Mar 8, 2018

Use the substitution #x-2=2sintheta#.

Explanation:

Let #I=intx^2/sqrt(4x-x^2)dx#

Complete the square in the square root:

#I=intx^2/sqrt(4-(x-2)^2)dx#

Apply the substitution #x-2=2sintheta#:

#I=int(2sintheta+2)^2d theta#

Rearrange:

#I=int(4sin^2theta+8sintheta+4)d theta#

Apply the identity #cos2theta=1-2sin^2theta#:

#I=int(6+8sintheta-2cos2theta)d theta#

Integrate term by term:

#I=6theta-8costheta-sin2theta+C#

Apply the identity #sin2theta=2sinthetacostheta#:

#I=6theta-8costheta-2sinthetacostheta+C#

Reverse the substitution:

#I=6sin^(-1)((x-2)/2)-1/2(x+6)sqrt(4x-x^2)#