We need
#costheta=(e^(itheta)+e^(-itheta))/2#
#i^2=-1#
Therefore,
#intcos(7x)^3dx=intcos(343x^3)dx#
#=int((e^(i343x^3)+e^(-i343x^3))/2)dx#
#=1/2inte^(i343x^3)dx+1/2inte^(-i343x^3)dx#
Let #u=-7i^(1/6)x#, #=>#, #du=-7i^(1/6)dx#
#1/2inte^(i343x^3)dx=-1/(14i^(1/6))inte^(-u^3)du#
#=-1/(42i^(1/6))Gamma (1/3 "," u^3)#
#=-1/(42i^(1/6))Gamma(1/3","-343ix^3)#
And
#1/2inte^(-i343x^3)dx=-1/(14i^(1/6))inte^(u^3)du#
#=-1/(42i^(1/6))Gamma(1/3","-u^3)#
#=-1/(42i^(1/6))Gamma(1/3","343ix^3)#
Finally,
#intcos(7x)^3dx=-1/(42i^(1/6))Gamma(1/3","-343ix^3)-1/(42i^(1/6))Gamma(1/3","343ix^3)+C#