What is the volume of the solid produced by revolving #f(x)=cotx, x in [pi/4,pi/2] #around the x-axis?

2 Answers
Mar 9, 2018

#V=pi-1/4pi^2#

Explanation:

The formula for finding the volume of a solid produced by revolving a function #f# around the #x#-axis is

#V=int_a^bpi[f(x)]^2dx#

So for #f(x)=cotx#, the volume of its solid of revolution between #pi"/"4# and #pi"/"2# is

#V=int_(pi"/"4)^(pi"/"2)pi(cotx)^2dx=piint_(pi"/"4)^(pi"/"2)cot^2xdx=piint_(pi"/"4)^(pi"/"2)csc^2x-1dx=-pi[cotx+x]_(pi"/"4)^(pi"/"2)=-pi((0-1)+(pi/2-pi/4))=pi-1/4pi^2#

Mar 9, 2018

#"Area of revolution around"# #x"-axis"=0.674#

Explanation:

#"Area of revolution around"# #x"-axis"=piint_a^b(f(x))^2dx#

#f(x)=cotx#
#f(x)^2=cotx#

#int_(pi/4)^(pi/2)cot^2xdx=int_(pi/4)^(pi/2)csc^2x-1dx#
#color(white)(int_(pi/4)^(pi/2)cot^2xdx)=pi[-cotx-x]_(pi/4)^(pi/2)#
#color(white)(int_(pi/4)^(pi/2)cot^2xdx)=pi[(-cot(pi/2)-pi/2)-(-cot(pi/4)-pi/4)]#
#color(white)(int_(pi/4)^(pi/2)cot^2xdx)=pi[(-0-pi/2)-(-1-pi/4)]#
#color(white)(int_(pi/4)^(pi/2)cot^2xdx)=pi[-pi/2+1+pi/4]#
#color(white)(int_(pi/4)^(pi/2)cot^2xdx)=0.674#