How do you write this expression in the form of a+bi? (3-2i)^3

1 Answer
Mar 10, 2018

#a=-9# and #b=-46#, and the expression is #(-9-46i)#

Explanation:

We have #(3-2i)^3#.
Since #(a-b)^3=a^3-3a^2b+3ab^2-b^3#

Here, #a=3# and #b=2i#. Inputting:

#3^3-3(3)^2(2i)+3(3)(2i)^2-(2i)^3#

#27-54i+(-36)-(-8i)#

#27-36-54i+8i#

#-9-46i#

This is in the form #a+bi#, where #a=-9# and #b=-46#