What is the period of cos nx?

1 Answer
Mar 10, 2018

the period of the function
#cosnx#
is
#x=(2pi)/n#

Explanation:

#cosnx#
#n=1#
#cosnx=cos1x#
#cosx#
has period of #x=2pi#
#x=(2pi)/1#
#n=2#
#cosnx=cos2x#
#cos2x#
has period of #2x=2pi#
#x=(2pi)/2#
#n=3#
#cosnx=cos3x#
#cos3x#
has period of #3x=2pi#
#x=(2pi)/3#

Hence, the period of the function
#cosnx#
is
#x=(2pi)/n#