If #-1/3x+7=4#, what is #1/3x+3#?

2 Answers
Mar 10, 2018

See a solution process below:

Explanation:

Step 1) Solve the equation for #x#:

#-1/3x + 7 = 4#

#-1/3x + 7 - color(red)(7) = 4 - color(red)(7)#

#-1/3x + 0 = -3#

#-1/3x = -3#

#color(red)(-3) xx -1/3x = color(red)(-3) xx -3#

#color(red)(-3)/-3x = 9#

#1x = 9#

#x = 9#

Step 2) Substitute #color(red)(9)# for #color(red)(x)# in the expression and then evaluate the expression:

#1/3color(red)(x) + 3# becomes:

#(1/3 xx color(red)(9)) + 3 =>#

#color(red)(9)/3 + 3 =>#

#3 + 3 =>#

#6#

Mar 10, 2018

#x=9#

#1/3x+3=6#

Explanation:

Solve the first equation for #x#.

#-1/3x+7=4#

Simplify #-1/3x# to #-x/3#.

#-x/3+7=4#

Subtract #7# from both sides.

#-x/3=4-7#

Simplify.

#-x/3=-3#

Multiply both sides by #3#.

#color(red)cancel(color(black)(3))^1xx(-x/color(red)cancel(color(black)(3))^1)=-3xx3#

Simplify.

#-x=-9#

Multiply both sides by #-1#.

#x=9#

Now substitute #9# for #x# in the second expression.

#1/3x+3#

Simplify #1/3x# to #x/3#.

#color(red)cancel(color(black)(9))^3/color(red)cancel(color(black)(3))^1+3#

Simplify.

#3+3=6#