What is the derivative of sec^3(2x)-3sec(2x)?

2 Answers
Mar 16, 2018

#1/4sec(2x)tan(2x)-5/(4)ln|tan(2x)+sec(2x)|+c#

Explanation:

#intsec^3(2x)-3sec(2x)dx#

Apply sum rule and take the constant out,

#color(red)(1/2intsec^3(2x)dx)-color(blue)(3/2intsec(2x)dx#

Apply integral reduction (refer to picture 1),

#color(red)(1/2((sec^(3-2)(2x)tan(2x))/(3-1)+(3-2)/(3-1)intsec^(3-2)(2x)))-color(blue)(3/2intsec(2x)dx#
#=color(red)(1/2((sec(2x)tan(2x))/(2)+(1)/(2)intsec(2x)))-color(blue)(3/2intsec(2x)dx#

Integrate #sec# (refer to picture 2),

#color(red)(1/2((sec(2x)tan(2x))/(2)+(1)/(2)ln|tan(2x)+sec(2x)|)-color(blue)(3/2ln|tan(2x)+sec(2x)|#

Simplify,

#color(red)(1/4sec(2x)tan(2x)+(1)/(4)ln|tan(2x)+sec(2x)|)-color(blue)(3/2ln|tan(2x)+sec(2x)|#
#=1/4sec(2x)tan(2x)-5/(4)ln|tan(2x)+sec(2x)|+c#

Reference:

Picture 1: Integral reduction

http://math.feld.cvut.cz/mt/txtd/3/txe4db3l.htm

Picture 2: Integral of #secx#

https://steemit.com/steemiteducation/@masterwu/the-integral-of-sec-x-part-1

Hope you have a nice day!

Mar 16, 2018

#dy/dx=6sec^3(2x)tan(2x)-6sec(2x)tan(2x)#

Explanation:

.

#y=sec^3(2x)-3sec(2x)#

Let #2x=u, :. 2dx=du#

#(du)/dx=2#

Let #sec(2x)=z, :. secu=z#

#secutanu(du)=dz#

#(dz)/(du)=secutanu=sec(2x)tan(2x)#

#y=z^3-3z#

#dy/dz=3z^2-3=3sec^2(2x)-3#

The Chain Rule says:

#dy/dx=(dy/(dz))((dz)/(du))((du)/dx)#

#dy/dx=(3sec^2(2x)-3)(sec(2x)tan(2x))(2)#

#dy/dx=6sec^3(2x)tan(2x)-6sec(2x)tan(2x)#