How do you simplify #\frac { 24y ^ { 5} } { 3y ^ { 2} }#?

4 Answers
Mar 16, 2018

This can also be written as
#24/3xxy^5/y^2#

This is a law of exponents
#a^m/a^n=a^(m-n)#

You get
#8xxy^(5-2)#
You get
#8xxy^3#
#8y^3#

Mar 16, 2018

#8y^3#

Explanation:

#(24y^5)/(3y^2)#
#(3xx8xx y^5)/(3xxy^2)#
#(cancel3xx8xxy^5)/(cancel3xxy^2)#
#8xxy^(5-2)#
(Using laws of indices - #a^m/a^n = a^(m-n)# )
#8y^3#

That's it. Hope it helps :)

Mar 16, 2018

#=> color(brown)(8y^3#

Explanation:

To simplify #(24y^5) / (3y^2)#

#=> (cancel(24)^color(red)(8) * cancel( y )* cancel(y ) * y * y * y) / ( cancel3 * cancel( y) * cancel(y))#

#=> (8 * y * y * y) = 8 y^3#

Mar 16, 2018

#8y^3#

Explanation:

#(24y^5)/(3y^2)#

Divide the constants,

#8*y^5/y^2#

Apply index third rule (#a^n-:a^m=a^(n-m)#)

#8y^3#