How do you convert r=2 sin(θ+pi/3) from polar to rectangular form?

1 Answer
Mar 16, 2018

Rectangular form is #(x-sqrt3/2)^2 +(y-1/2)^2=1#

Explanation:

We know ,#r^2=x^2+y^2 , x= rcos theta , y= r sin theta#

#r=2 sin (theta+pi/3)# or

#r^2=2r sin (theta+pi/3)# or

#r^2=2r(sin theta cos (pi/3)+cos theta sin (pi/3))# or

#r^2=2r(sin theta/2+cos theta*sqrt3/2)# or

#r^2=rsin theta+ sqrt3 rcos theta# or

#x^2+y^2= y +sqrt3 x# or

#x^2- sqrt3 x +y^2-y = 0# or

#x^2- sqrt3 x +(sqrt3/2)^2+y^2-y+(1/2)^2= 3/4+1/4# or

#(x-sqrt3/2)^2 +(y-1/2)^2=1#

Rectangular form is #(x-sqrt3/2)^2 +(y-1/2)^2=1#

graph{(x-sqrt3/2)^2+(y-1/2)^2=1 [-10, 10, -5, 5]}