1) If θ is a fixed real number with 0≤θ<2π Show that for all real x, cos(x)+cos(x+θ)=Acos(x+φ) where φ=θ/2 and A=2cos(θ/2) 2) Determine θ if A=1/4 and if A=-1?

I would really appreciate any help... Part should be related with compound angle formulae cos(α+β) and cos(α-β)

3 Answers
Mar 16, 2018

If #A=1/4 #

for #0<=theta<=2pi# the solution is: #theta=2arccos(1/8) #

If #A=-1 #
for #0<=theta<=2pi# the solution is: # theta=4pi/3#

Explanation:

Using prosthaphaeresis formula:
#cosalpha+cosbeta=2cos(alpha +beta)/2*cos(alpha -beta)/2#
could obtain:

#cos(x)+cos(x+θ)=2cos((x+x+theta)/2) *cos((x-x-theta)/2)#

#cos(x)+cos(x+θ)=2cos((x+x+theta)/2 *cos((x-x-theta)/2)#

#cos(x)+cos(x+θ)=2cos((2x+theta)/2 )*cos(-theta/2)#

#cos(-alpha)=cosalpha#, #phi=theta/2rArr2cos((2x+theta)/2 )=cos(x+φ)#

then:

#cos(x)+cos(x+θ)=Acos(x+φ)#

If #A=1/4rArr1/4=2cos(theta/2) #
#cos(theta/2)=1/8rArr theta/2=+-arccos(1/8)+2kpi#
General solution: #theta=+-2arccos(1/8)+4kpi#

for #0<=theta<=2pi# the solution is: #theta=2arccos(1/8)#

If #A=-1rArr-1=2cos(theta/2) #
#cos(theta/2)=-1/2rArr theta/2=+-2pi/3+2kpi#
General solution: #theta=+-4pi/3+4kpi#

for #0<=theta<=2pi# the solution is: #theta=4pi/3#

Note that in both cases the period is #4pi#, then is only one solution is valid in #[0,2pi].#

Mar 16, 2018

Please see below.

Explanation:

As #cosA+cosB=2cos((A+B)/2)cos((A-B)/2)#

#cosx+cos(x+theta)=2cos((2x+theta)/2)cos((-theta)/2)#

= #2cos(x+theta/2)cos(theta/2)#

= #2cos(theta/2)(x+theta/2)#

= #Acos(theta+phi)#

where #A=2cos(theta/2)# and #phi=theta/2#

(a) if #A=1/4#, we have #2cos(theta/2)=1/4#

or #cos(theta/2)=1/8# and

hence #costheta=2cos^2(theta/2)-1=2xx(1/8)^2-1=-31/32#

and #theta=cos^(-1)(-31/32)=2.891# or #2.891+pi#

(b) if #A=-1#, we have #2cos(theta/2)=-1#

or #cos(theta/2)=-1/2# and

hence #costheta=2cos^2(theta/2)-1=2xx(-1/2)^2-1=-1/2#

and #theta=cos^(-1)(-1/2)=(2pi)/3# or #(5pi)/3#

Mar 16, 2018

#theta=(4pi)/3 and# note that: #theta!=(2pi)/3ortheta!=(5pi)/3#
First part is already proved by Mr.Shwetank Mauria and Mr. Dhilak.

Explanation:

First part is proved .So we determine #theta# only for #A=-1#
Now,
#A=-1=>2cos(theta/2)=-1=>cos(theta/2)=-1/2#
We have,
#0<=theta<2pi to#, (given)
#=>0 <= (theta)/2 < pi=> 1^(st)and 2^(nd)# quadrant
But , #cos(theta/2)=-1/2<0=>2^(nd)#quadrant
So,
#cos(theta/2)=cos((2pi)/3)=>theta/2=(2pi)/3=>theta=(4pi)/3#
Note:
#A=2cos(theta/2)=2cos((2pi)/3)=2(-1/2)=-1#
For, #theta=(2pi)/3#
#=>color(red)A=2cos(theta/2)=2cos(((2pi)/3)/2)=2cos(pi/3)=2(1/2)=color(red)1#
#theta=(5pi)/3=>color(red)A=2cos(theta/2)=2cos(((5pi)/3)/2)=2cos((5pi)/6)=2cos(pi-pi/6)=-2cos(pi/6)=-2(sqrt3/2)=color(red)(-sqrt3)#