Evaluate #int_0^1 (t/(1+t^3))dt#?
3 Answers
Explanation:
Separate the derivative into individual terms using partial fraction decomposition,
#t/(1+t^3)# Factorise the denominator using sum of cubes formula,
#t/((1+t)(1-t+t^2)# Apply partial fraction decomposition,
#t/((1+t)(1-t+t^2))=A/(1+t)+(Bt+C)/(1-t+t^2)# Multiply throughout by
#(1+t)(1-t+t^2)# ,
#t=A(1-t+t^2)+(Bt+C)(1+t)# Let
#t=-1# ,
#-1=A(1-(-1)+(-1)^2)+(B(-1)+C)(1+(-1))#
#:.A=-1/3# Let
#t=0# ,
#0=-1/3(1-(0)+(0)^2)+(B(0)+C)(1+(0))#
#:.C=1/3# Let
#t=1# ,
#1=-1/3(1-(1)+(1)^2)+(B(1)+1/3)(1+(1))#
#:.B=1/3# Conclude,
#t/((1+t)(1-t+t^2))=(1/3)/(1+t)+(1/3t+1/3)/(1-t+t^2)#
Substitute back to the expression,
Apply sum rule and take the constants out,
Let's separate the terms to make them easier to work with,
- First integral,
#color(red)(-1/3int_0^1 1/(1+t) \ dt)# Integrate,
#color(red)([-1/3ln|1+t|]_0^1#
- Second integral,
#color(blue)(1/3int_0^1(t+1)/(1-t+t^2) \ dt# Complete the square for the denominator,
#color(blue)(1/3int_0^1(t+1)/((t-1/2)^2+3/4) \ dt# Multiply the function by
#2# , by dividing the constant by#2# ,
#color(blue)(1/6int_0^1(2t+2)/((t-1/2)^2+3/4) \ dt# Apply sum rule,
#color(blue)(1/6int_0^1(2t-1)/((t-1/2)^2+3/4) \ dt + 1/6int_0^1(3)/((t-1/2)^2+3/4) \ dt# Integrate first function,
#color(blue)([1/6ln|1-t+t^2|]_0^1 + 1/2int_0^1(1)/((t-1/2)^2+3/4) \ dt# Apply
#u# -substitution, where#u=2/sqrt3(t-1/2)# ,
#color(blue)([1/6ln|1-t+t^2|]_0^1 + 1/2int_0^1(sqrt3/2)/(3/4u^2+3/4) \ du# Simplify,
#color(blue)([1/6ln|1-t+t^2|]_0^1 + 1/2int_0^1(2sqrt3)/(3(u^2+1)) \ du# Take the constant out,
#color(blue)([1/6ln|1-t+t^2|]_0^1 + 1/sqrt3int_0^1(1)/(u^2+1) \ du# Apply arctangent rule,
#color(blue)([1/6ln|1-t+t^2|]_0^1 + [1/sqrt3arctanu]_0^1# Substitute back
#u=2/sqrt3(t-1/2)# ,
#color(blue)([1/6ln|1-t+t^2|]_0^1 + [1/sqrt3arctan((2t-1)/sqrt3)]_0^1#
Substitute the two integrals back,
Expand,
Remove parenthesis,
Simplify,
Factorise,
Simplify,
Tad bit long.
The answer is
Explanation:
First calculate the indefinite integral
Factorise the denominator
Perform the decomposition into partial fractions
The denominators are the same, compare the numerators
Let
Let
Coefficients of
Finally,
The first integral is
The second integral is
Therefore,
Let
Putting all together
Now calculate the definite integral
Explanation:
Here,
Comparing coefficient of