What is the derivative of #(sinx)/(4+cosx)#?

1 Answer
Mar 17, 2018

#(4cosx+1)/(4+cosx)^2#

Explanation:

#"differentiate using the "color(blue)"quotient rule"#

#"Given "y=(g(x))/(h(x))" then"#

#dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#

#g(x)=sinxrArrg'(x)=cosx#

#h(x)=4+cosxrArrh'(x)=-sinx#

#rArrd/dx((sinx)/(4+cosx))#

#=(cosx(4+cosx)+sin^2x)/(4+cosx)^2#

#=(4cosx+cos^2x+sin^2x)/(4+cosx)^2#

#=(4cosx+1)/(4+cosx)^2#