Differentiate (sin/x)^1/x^2 ?

2 Answers
Mar 18, 2018

#dy/dx=(sinx)^(1/x^2)[(1/x^2)cot(x)-(2/x^3)(log(sinx))]#

Explanation:

Let #y=(sinx)^(1/x^2)#
taking ln both side we get.
#lny=ln((sinx)^(1/x^2))#
apply #ln(a^m)=mlna# we get
#lny=(1/x^2)(ln(sinx))#
differentiate both side wrt x we get
#(1/y)(dy/dx)=(1/x^2)(cosx/sinx)+(ln(sinx))(-2/x^3)#
#(1/y)(dy/dx)=(1/x^2)cot(x)-(2/x^3)(ln(sinx))#
#dy/dx=y[(1/x^2)cot(x)-(2/x^3)(ln(sinx))]#
putting #y=(sinx)^(1/x^2)# in above equation we get
#dy/dx=(sinx)^(1/x^2)[(1/x^2)cot(x)-(2/x^3)(ln(sinx))]#
this is the required result
hope you understand

Mar 18, 2018

#(sinx)^(1/x^2)*(cosx/(x^2sinx)-(2ln(sinx))/x^3)#

Explanation:

We have: #(sinx)^(1/x^2)#

We rewrite this as:

#(sinx)^(x^-2)#

Remember this rule:

#d/dx[f(x)^(g(x))]=f(x)^(g(x))*d/dx[ln(f(x))*g(x)]#

Also, remember the following:

#d/dx[lnx]=1/x#

#d/dx[f(x)*g(x)]=f'(x)*g(x)+f(x)*g'(x)#

#d/dx[f(g(x))]=f'(g(x))*g'(x)#

We now have:

#(sinx)^(x^-2)*d/dx[ln(sinx)*x^-2]#

#(sinx)^(x^-2)*(d/dx[ln(sinx)]*x^-2+ln(sinx)*d/dx[x^-2])#

Some other rules:

#d/dx[x^n]=nx^(n-1)#

#d/dx[sinx]=cosx#

#=>(sinx)^(x^-2)*(1/(sinx)*x^-2*d/dx[sinx]+ln(sinx)(-2x^-3))#

#=>(sinx)^(x^-2)*(1/(sinx)*x^-2*cosx+ln(sinx)(-2x^-3))#

#=>(sinx)^(1/x^2)*(1/(sinx)*cosx*1/x^2+ln(sinx)(-2x^-3))#

#=>(sinx)^(1/x^2)*(cosx/((sinx)x^2)+ln(sinx)(-2x^-3))#

#=>(sinx)^(1/x^2)*(cosx/((sinx)x^2)-2ln(sinx)(1/x^3))#

#=>(sinx)^(1/x^2)*(cosx/(x^2sinx)-(2ln(sinx))/x^3)#

This is our answer!