How do you simplify #2/(3sqrt63) #?

2 Answers
Mar 18, 2018

Shown below...

Explanation:

We need to rationalise the denominator, in this case multiply both numerator and denominator by #sqrt(63) #

#=> 2/( 3sqrt(63) ) * sqrt(63) / sqrt(63)#

#=> ( 2sqrt(63) ) /( 3 * 63)#

#=>( 2 * sqrt(3*3* 7 ) ) / 189 #

#=> ( 6sqrt(7) ) / 189 #

#=> (2sqrt(7) ) / 63 #

Mar 18, 2018

#(2 sqrt7)/63#

Explanation:

#2/(3sqrt63)#

#:.=2/(3sqrt(3*3*7))#

#:.sqrt3*sqrt3=3#

#:.=2/(3*3sqrt7)#

#:.=2/(9sqrt7)#

#:.=2/(9sqrt7)xxsqrt7/sqrt7#

#:.sqrt7xxsqrt7=7#

#:.=(2sqrt7)/(9xx7)#

#:.=(2sqrt7)/63#