How do you simplify #(2- x ) ^ { 2} ( x - 3) ^ { 2} - ( x ^ { 2} + 3) ^ { 2}#?

1 Answer
Mar 20, 2018

#=-10x^3+31x^2+12x+27#

Explanation:

Just take it 1 step at a time
#(2-x)(2-x)#
#a= x^2-4x+4#
#(x-3)(x-3)#
#b=x^2-6x+9#
#(x^2 +3)(x^2+3)#
#c=x^4 + 6x^2+9#
you'll have to distribute a and b so simply take the x^2 and multiply it to every term in b, then take -4x and multiply it to every term in b and so on.
#(x^2 - 4x + 4)(x^2-6x+9)#
#=x^4-6x^3+9x^2#
#.........-4x^3+24x^2+36x#
#........................4x^2-24x+36#
#=x^4-10x^3+37x^2+12x+36#
all this subtracted to c
#=(x^4-10x^3+37x^2+12x+36)- (x^4 + 6x^2+9)#
distribute the minus
#=x^4-10x^3+37x^2+12x+36- x^4 - 6x^2-9#
combine and cancel what you can
#=-10x^3+31x^2+12x+27#