Solve this?

If #sin^(-1)(x-x^2/x+x^3/4.....)+cos^(-1)(x^2-x^4/2+x^6/4.....)=pi/2# for #0<x<sqrt2# then x equals

#a. 1#

#b. 1/2#

#c. 0#

#d.-1#

1 Answer
Mar 20, 2018

#a.# #1#

Explanation:

#sin^-1 theta+cos^-1theta=pi/2#
You have:
#sin^-1(x-x^2/2+x^3/4-...)+cos^-1(x^2-x^4/2+x^6/4-...)=pi/2#

Thus, we can say,
#(x-x^2/2+x^3/4-...)=(x^2-x^4/2+x^6/4-...)#
[because #sin^-1 theta+cos^-1theta=pi/2#; so #theta# is the common or same angle]

From the equation, we understand:
#x=x^2,# #x^2=x^4#,#x^3=x^6,# and so on.
These can be possible only when #(x=1)# or when #(x=0)#.

#color(blue) (0< x < sqrt2.#
Thus, as #x>0#, the only possible value of #x# is 1.