Verify the identity #sin x cos x(tan x + cot x) = 1 #?
2 Answers
Mar 21, 2018
Verified below
Explanation:
Using the identities:
Start:
Mar 21, 2018
We seek to prove that:
# sin x cos x(tan x + cot x) -= 1 #
Consider the LHS:
# LHS -= sin x cos x(tan x + cot x) #
# \ \ \ \ \ \ \ \ = sin x cos x(sinx/cosx + cosx/sinx) #
# \ \ \ \ \ \ \ \ = sin x cos x((sinxsinx + cosxcosx)/(sinxcosx)) #
# \ \ \ \ \ \ \ \ = sin x cos x((sin^2x + cos^2x)/(sinxcosx)) #
# \ \ \ \ \ \ \ \ = sin^2x + cos^2x #
# \ \ \ \ \ \ \ \ -= 1 \ \ \ # QED