When a-1/a=1, a^5-1/a^5 =? how to solve....

3 Answers
Mar 21, 2018

11.

Explanation:

Given that, a-1/a=1, on squaring, we have,

a^2-2*a*1/a+1/a^2=1, or,

a^2+1/a^2=3..................................................................(square_1).

Also, a^3-1/a^3=(a-1/a)(a^2+1+1/a^2),

=(1)(3+1)....................................................[because, (square_1)].

rArr a^3-1/a^3=4.........................................................(square_2).

Utilising (square_1) and (square_2), we have,

(a^2+1/a^2)(a^3-1/a^3)=3xx4=12.

:. a^5-a^2/a^3+a^3/a^2-1/a^5=12, i.e.,

a^5-1/a+a-1/a^5=12.

rArr a^5-1/a^5=12-a+1/a=12-(1)=11.

Mar 21, 2018

11

Explanation:

From the binomial theorem, we know that

(a+b)^3 = a^3+3a^2b+3ab^2+b^3

and

(a+b)^5 = a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5

Thus

(a-1/a)^3 = a^3-3a^2 1/a+3a(1/a)^2-(1/a)^3
qquad = (a^3-1/a^3)-3(a-1/a)

So, a-1/a=1 implies
a^3-1/a^3=(a-1/a)^3+3(a-1/a)=1^3+3times 1=4

Similarly, we show that

(a-1/a)^5=color(red)(a^5)+color(blue)(5a^4(-1/a))+10a^3(-1/a)^2+10a^2(-1/a)^3+color(blue)(5a(-1/a)^4)+color(red)((-1/a)^5)
=color(red)(a^5)color(blue)(-5a^3)+10a-10/a color(blue)(+5/a^3) color(red)(-1/a^5)
= color(red)((a^5-1/a^5))color(blue)(-5(a^3-1/a^3))+10(a-1/a)

Thus

a^5-1/a^5 = (a-1/a)^5 + 5(a^3-1/a^3)-10(a-1/a)

so that, for our problem

a^5-1/a^5=1^5+5times 4-10times 1=11

Mar 24, 2018

a^5-1/a^5 = L_5 = 11

Explanation:

One interesting thing about this question is that it relates to a sequence defined by a recursive rule, similar to a Fibonacci sequence.

Given:

a-1/a = 1

Then:

a^2 = a + 1

1/a^2 = 1-1/a

a^2+1/a^2 = (a-1/a)^2+2 = 1+2 = 3

Consider the sequence with general term:

L_n = a^n+(-1)^n/a^n

We find:

L_(2k+2) = a^(2k+2)+1/a^(2k+2)

color(white)(L_(2k+2)) = a^2 a^(2k) + 1/a^2 1/a^(2k)

color(white)(L_(2k+2)) = (a+1) a^(2k) + (1-1/a) 1/a^(2k)

color(white)(L_(2k+2)) = a^(2k+1)-1/a^(2k+1)+a^(2k) + 1/a^(2k)

color(white)(L_(2k+2)) = L_(2k+1)+L_(2k)

Also:

L_(2k+1) = a^(2k+1)-1/a^(2k+1)

color(white)(L_(2k+1)) = a^2 a^(2k-1) - 1/a^2 1/a^(2k-1)

color(white)(L_(2k+1)) = (a+1) a^(2k-1) - (1-1/a) 1/a^(2k-1)

color(white)(L_(2k+1)) = a^(2k)+1/a^(2k)+a^(2k-1)-1/a^(2k-1)

color(white)(L_(2k+1)) = L_(2k)+L_(2k-1)

So for any n, odd or even, we have:

L_(n+2) = L_(n+1)+L_n

For our initial terms we find:

L_0 = a^0+1/a^0 = 1+1/1 = 2

L_1 = a^1-1/a^1 = a-1/a = 1

So we have a complete recursive definition of L_n

{ (L_0 = 2), (L_1 = 1), (L_(n+2) = L_(n+1)+L_n) :}

This sequence starts:

2, 1, 3, 4, 7, 11

So:

a^5-1/a^5 = L_5 = 11

I used the letter "L" intentionally, as this is known as the Lucas sequence.