Solve #sin7x+cos2x=-2#?

2 Answers
Mar 21, 2018

#x=(2k+1)pi/2" where " k in ZZ#

Explanation:

#sin7x+cos2x=-2#

#=>1+sin7x+1+cos2x=0#

#=>sin^2(7/2x)+cos^2(7/2x)+2sin(7/2x)cos(7/2x)+2cos^2x=0#

#=>(sin(7/2x)+cos(7/2x))^2+2cos^2x=0#

So #sin(7/2x)+cos(7/2x)=0#

#=>tan(7/2x)=-1=tan(-pi/4)#

#=>7/2x=npi-pi/4" where " n in ZZ#

#=>x=(2npi)/7-pi/14" where " n in ZZ#

#=>x=(4n-1)pi/14" where " n in ZZ#
Again
#cosx=0#
#=>x=(2k+1)pi/2" where " k in ZZ#

Please see the modification given below by maganbhi.P

#x=(2k+1)pi/2,kinZ#

Explanation:

Mr.dk_ch had solved the equn. #color(red)(sin7x+cos2x=-2#
#(1)x=(2k+1)pi/2,kinZ# is O.K....But
#color(red)((2)x=(4n-1)pi/14,ninZ ,# is not correct #AA n inZ#
If we take #n=0=>x=-pi/14=>7x=-pi/2and2x=-pi/7#
#LHS=sin(-pi/2)+cos(-pi/7)=-1+cospi/7!=-2#
If we take #n=1=>x=(3pi)/14=>7x=(3pi)/2and2x=(3pi)/7#
#LHS=sin((3pi)/2)+cos((3pi)/7)=-1+cos(3pi)/7!=-2#
If we take #n=2=>x=pi/2=>7x=(7pi)/2and2x=pi#
#LHS=sin((7pi)/2)+cos(pi)=(-1)+(-1)=-2=RHS#
After checking different values of n, I found LHS=RHS only for
#n=...-12,-5,2,9,16,...# which is Arithmetic series.
The #k^(th)# term #t_k=a+(k-1)d,# let,a=9,d=7
#=>t_k=9+(k-1)7=7k+2#
Equn. is satisfies if ,we take
#kinZ# ,for,#n=7k+2##=>4n=28k+8#
#=>4n-1=28k+7=7(4k+1)#
#=>(4n-1)pi/14=7(4k+1)pi/14=(4k+1)pi/2#
i.,e.#x=(4k+1)pi/2,kinZ#,
which is subset of
#x=(2k+1)pi/2,kinZ#