How do you write #6x^2 + 4x # in factored form?

2 Answers
Mar 21, 2018

#color(green)(=> (sqrt6 x + 2 / sqrt6)^2 - 2/3#

#=> color(red)((sqrt6 x + 2/sqrt6 + sqrt(2/3)) * (sqrt6 x + 2/sqrt6 - sqrt(2/3))#

Explanation:

#6x^2 + 4x = 6x*2 + 4x + 4 / 6 - 4/6, " Add & Subtract 4/6"#

#=> (sqrt6x)^2 + 2 * (1/sqrt6) * 2 * x + (2/sqrt6)^2 - 2/3#

It is in the form# (a2 + 2ab + b^2) " where " a = sqrt6. b = 2 / sqrt6#

Hence #=> (sqrt6 x + 2 / sqrt6)^2 - (sqrt(2/3))^2#

It is again in the for #a^2 - b^2#

#=> (sqrt6 x + 2/sqrt6 + sqrt(2/3)) * (sqrt6 x + 2/sqrt6 - sqrt(2/3))#

Mar 21, 2018

#2x(3x+2)#

Explanation:

#"take out a "color(blue)"common factor "2x#

#rArr6x^2+4x=2x(3x+2)#