Let
#y=(cos(2x^4)-1)/(x^7)#
Let
# u=cos(2x^4)-1#
#v=x^7#
#y=u/v#
By quotient rule,
#dy/dx=(v(du)/dx-u(dv)/dx)/v^2#
# u=cos(2x^4)-1#
Let
#t=x^4#
#u=cos2t-1#
wkt
#1-cos2t=2sin^2t#
#u=-(1-cos2t)#
#u=-2sin^2t#
By chain rule
#(du)/dx=(du)/dt(dt)/dx#
#u=-2sin^2t#
#sin^2t=(sint)^2#
Let
#p=sint#
#(sint)^2=p^2#
#u=-2p#
By chain rule
#(du)/dt=-2(dp)/dt#
#p=sint#
#(dp)/dt=cost#
#(du)/dt=-2cost#
#-2cost=-2cosx^4#
#(du)/dt=-2cosx^4#
#(du)/dx=(du)/dt(dt)/dx#
#t=x^4#
#(dt)/dx=4x^3#
#(du)/dx=-2cosx^4(4x^3)#
#(du)/dx=-8x^3cosx^4#
#v=x^7#
#(dv)/dx=7x^6#
#dy/dx=(v(du)/dx-u(dv)/dx)/v^2#
# u=-2sin^2t#
#u=-2sin^2x^4#
#v=x^7#
#(du)/dx=-8x^3cosx^4#
#(dv)/dx=7x^6#
#dy/dx=(x^7(-8x^3cosx^4)-(-2sin^2x^4)(7x^6))/(x^7)^2#
#dy/dx=(-8x^10cosx^4+14x^6sin^2x^4)/x^14#
#dy/dx=-8/x^4cosx^4+14/x^8sin^2x^4#