How do you prove cos^2a + cos^2(2π/3 + a) + cos^2(2π/3 - a) = 3/2? a = alpha Thanks!
1 Answer
Mar 21, 2018
We have:
#(cosalpha)^2 + (cos((2pi)/3 + alpha))^2 + (cos((2pi)/3 - alpha))^2 = 3/2#
We can use the sum and difference formulas for cosine to expand.
#(cosalpha)^2 + (cos((2pi)/3)cosalpha - sin((2pi)/3)sin alpha)^2 + (cos((2pi)/3)cosalpha + sin((2pi)/3)sinalpha)^2 = 3/2#
#(cosalpha)^2 + (-1/2cosalpha - (sqrt(3)/2sinalpha))^2 + (-1/2cosalpha + sqrt(3)/2sinalpha)^2 = 3/2#
#(cosalpha)^2 + 1/4cos^2alpha + 3/4sin^2alpha + sqrt(3)/4cosalphasinalpha + 1/4cos^2alpha + 3/4sin^2alpha - sqrt(3)/4cosalphasinalpha = 3/2#
#cos^2alpha + 1/2cos^2alpha + 6/4sin^2alpha = 3/2#
#3/2cos^2alpha + 3/2sin^2alpha = 3/2#
#3/2(cos^2alpha + sin^2alpha) = 3/2#
#3/2 = 3/2#
#LHS = RHS#
As required.
Hopefully this helps!