Differentiation of secx(tan√x)? In few steps.

2 Answers
Mar 24, 2018

#(dy)/(dx)=secx[(sec^2sqrtx)/(2sqrtx)+tansqrtxtanx]#

Explanation:

#y=secx(tan√x)#
#:.(dy)/(dx)=secxd/(dx)(tansqrtx)+tansqrtxd/(dx)(secx)#
#=secxsec^2sqrtxd/(dx)(sqrtx)+tansqrtxsecxtanx#
#=secxsec^2sqrtx(1/(2sqrtx))+tansqrtxsecxtanx#
#=1/(2sqrtx)secxsec^2sqrtx+tansqrtxsecxtanx#
#(dy)/(dx)=secx[(sec^2sqrtx)/(2sqrtx)+tansqrtxtanx]#

Mar 24, 2018

#dy/dx=secxsec^2sqrtxsqrtx/(2x)+tansqrtxsecxtanx#

Explanation:

.

#y=secxtansqrtx#

let #sqrtx=u=x^(1/2), :. x=u^2#

#(du)/dx=1/2x^(-1/2)=1/(2sqrtx)=sqrtx/(2x)#

#d(tansqrtx)=d(tanu)=sec^2udu#

Let's divide both sides by#dx#:

#(d(tansqrtx))/dx=sec^2u((du)/dx)=sec^2sqrtxsqrtx/(2x)#

#dy/dx=secx((d(tansqrtx))/dx)+tansqrtxsecxtanx#

#dy/dx=secxsec^2sqrtxsqrtx/(2x)+tansqrtxsecxtanx#