#sin2A=2sinAcosA=(2sinAcosA)/(sin^2A+cos^2A)#
= #((2sinAcosA)/cos^2A)/(sin^2A/cos^2A+1)=(2tanA)/(1+tan^2A)#
Similarly #cos2A=(cos^2A-sin^2A)/(cos^2A+sin^2A)#
= #(1-tan^2A)/(1+tan^2A)#
and hence #sin4A=2sin2Acos2A=(4tanA(1-tan^2A))/(1+tan^2A)^2#
I am treating as #tanA=(a+sqrt(1-a))/(a+sqrt(1+a))#, to distinguish it from angle #A#.
then #tan^2A=(a+sqrt(1-a))^2/(a+sqrt(1+a))^2#
or #(a+1-a+2asqrt(1-a))/(a+1+a+2asqrt(1+a))#
i.e. #tan^2A=(1+2asqrt(1-a))/(1+2a+2asqrt(1+a))#
and #1+tan^2A=(2+2a+2a(sqrt(1-a)+sqrt(1+a)))/(1+2a+2asqrt(1+a))#
and using componendo dividendo
#(1-tan^2A)/(1+tan^2A)=((1+2a+2asqrt(1+a))-(1+2asqrt(1-a)))/((1+2a+2asqrt(1+a))+(1+2asqrt(1-a)))#
= #(2a+2a(sqrt(1+a)-sqrt(1-a)))/(2+2a+2a(sqrt(1+a)+sqrt(1-a)))#
and #(2tanA)/(1+tan^2A)=2(a+sqrt(1-a))/(a+sqrt(1+a))xx
(1+2a+2asqrt(1+a))/(2+2a+2a(sqrt(1-a)+sqrt(1+a)))#
Hence #sin4A=2(a+sqrt(1-a))/(a+sqrt(1+a))xx
(1+2a+2asqrt(1+a))/(2+2a+2a(sqrt(1-a)+sqrt(1+a)))xx(2a+2a(sqrt(1+a)-sqrt(1-a)))/(2+2a+2a(sqrt(1+a)+sqrt(1-a)))#