Write the complex number in Cartesian form: #e^((ln4-ipi)/4)# How do I do that?

1 Answer
Mar 27, 2018

#e^((ln 4 - ipi)/4) = 1-i#

Explanation:

Euler's formula tells us:

#e^(i theta) = cos theta + i sin theta#

So we find:

#e^((ln 4 - ipi)/4) = e^((ln 4)/4) * e^(-(ipi)/4)#

#color(white)(e^((ln 4 - ipi)/4)) = 4^(1/4)(cos(-pi/4) + i sin(-pi/4))#

#color(white)(e^((ln 4 - ipi)/4)) = sqrt(2)(sqrt(2)/2 - sqrt(2)/2 i)#

#color(white)(e^((ln 4 - ipi)/4)) = 1-i#