How do you express #(2x-10)/(x^2-2x-15)# in simplest form?

1 Answer
Mar 27, 2018

#color(blue)(2/(x+3)#

Explanation:

Factor denominator:

#x^2-2x-15#

#x^2-5x+3x-15#

#x(x-5)+3(x-5)#

#:.#

#(x-5)(x+3)#

#(2x-10)/((x-5)(x+3))#

Factor numerator:

#(2(x-5))/((x-5)(x+3))#

Cancel like factors:

#(2cancel((x-5)))/(cancel((x-5))(x+3))=color(blue)(2/(x+3)#