Solve for #x# in #sin2xsinx-cos2xcosx=-cosx#?

1 Answer
Mar 29, 2018

See below

Explanation:

Get everything in terms of cosine by applying the double angle formulas and Pythagorean identities:
#sin2xsinx-cos2xcosx=-cosx#
#(2sinxcosx)sinx-(2cos^2x-1)cosx=-cosx#
#2sin^2xcosx-(2cos^3x-cosx)=-cosx#
#2cosxsin^2x-(2cos^3x-cosx)=-cosx#
#2cosx(1-cos^2x)-(2cos^3x-cosx)=-cosx#
#2cosx-2cos^3x-2cos^3x+cosx=-cosx#
#-4cos^3x+4cosx=0#
#-4cos^3x+4cosx=0#
#-4cosx(cos^2x-1)=0#

Solutions:
#cosx=0#
#cosx=+-1#

In the interval #[0, 2pi)#
#x= pi/2, (3pi)/2, 0, pi#

Graph:
graph{sin(2x)sinx-cos(2x)cosx+cosx [-10, 10, -5, 5]}