How do you prove #cscx = sec(pi/2 - x)#?

2 Answers
Mar 29, 2018

Since this is an identity,

the relation is true for all values of x

Explanation:

Given:

#cscx=sec(pi/2-x)#

#cscx=1/sinx#

#sec(pi/2-x)=1/cos(pi/2-x)#

Thus,

#1/sinx=1/cos(pi/2-x)#

#cos(pi/2-x)=sinx#

Since this is an identity,

the relation is true for all values of x

Mar 29, 2018

See below

Explanation:

Using:
#secx=1/cosx#
#1/sinx=cscx#
#cos(x-y)=cosxcosy+sinxsiny#

Start:
#cscx=sec(pi/2-x)#

#cscx=1/cos(pi/2-x)#

#cscx=1/(cos(pi/2)cosx+sin(pi/2)*sinx)#

#cscx=1/(cancel(0*cosx)+1*sinx)#

#cscx=1/sinx#

#cscx=cscx#