#intx^2/(sqrt(9-x^2)) dx= x^2/(sqrt(3^2-x^2))dx# using our trig identities for integrals let us substitute #3sinphi = x# and #dx = 3cosphi dphi#
#therefore# #3int(9sin^2phi)(cosphi)(dphi)/(sqrt(9-(9sin^2phi)) #
#3int(9sin^2phi)(cosphi)(dphi)/(sqrt(9(1-(sin^2phi))#
where #1-sin^2phi = cos^2phi#
#3int(9sin^2phi)(cosphi)(dphi)/(sqrt(9(cos^2phi))#
#3int(9sin^2phi)(cancelcosphi)(dphi)/(3(cancelcosphi))#
#cancel3int(9sin^2phi)(dphi)/(cancel3)#
#int(9sin^2phi)(dphi) = 9int(sin^2phi)(dphi)#
Use the identity from trig where #cos(2phi) = 1-2sin^2phi# rearranging to solve such that #(cos(2phi) -1)/(-2)= sin^2phi# or #(1-cos(2phi))/(2)= sin^2phi#
#9int(1-cos(2phi))/(2)(dphi) = 9/2int(1-cos(2phi))(dphi)# use subtraction rules of the integral
#9/2int(dphi)-9/2intcos(2phi)dphi#
#9/2int(dphi) = (9/2)phi#
#-9/2intcos(2phi)dphi = -9/4sin(2phi)#
Now piece together and substitute in
#(9/2)phi-9/4sin(2phi)+C#
#phi = arcsin(x/3)#
#(9/2)phi-9/4sin(2phi)+C#
#(9/2)(arcsin(x/3)-1/2sin(2arcsin(x/3))+C#