What is the integral of #sin^3x#?

2 Answers
Apr 2, 2018

# 1/12(cos3x-9cosx)+C#.

Explanation:

We know that, #sin3x=3sinx-4sin^3x rArr sin^3x=1/4(3sinx-sin3x)#.

#:. intsin^3xdx#,

#=1/4int(3sinx-sin3x)dx#,

#=1/4{3(-cosx)-(-cos3x)1/3}#.

# rArr intsin^3xdx=1/12(cos3x-9cosx)+C#.

Apr 2, 2018

#int sin^3 xcolor(white)(.)dx = -cos x + 1/3 cos^3 x + C#

Explanation:

As is often the case with trigonometric integrals, there is more than one way to tackle this...

Note that:

#sin^2 x = 1-cos^2 x#

So:

#int sin^3 x dx = int sin x(1 - cos^2 x)dx#

#color(white)(int sin^3 x dx) = int sin x - sin x cos^2 x color(white)(.)dx#

#color(white)(int sin^3 x dx) = -cos x + 1/3 cos^3 x + C#

Note that this is equivalent to the other answer, as you may care to verify yourself. [Hint: Use #cos 3 x = 4 cos^3x - 3 cos x#]