Verify this is an identity? #2 sin^2 (u/2)=sin^2u/(1+cosu)#

2 Answers
Apr 3, 2018

#LHS=2 sin^2 (u/2)#

#=(2 sin^2 (u/2)xx2cos^2(u/2))/(2cos^2(u/2))#

#=(2 sin (u/2)cos(u/2))^2/(1+cosu)#

#=sin^2u/(1+cosu)=RHS#

Apr 3, 2018

Proof

Explanation:

Let us start with LHS.

#=2sin^2(u/2)#

#=(2sin^2(u/2) \times 2cos^2(u/2))/(2cos^2(u/2))#

#=(2sin(u/2)cos(u/2))^2/(2cos^2(u/2))#

#sin(2 theta) = 2sintheta cos theta# and #cos (2 theta) = 2cos^2theta - 1#. So,

#=sin^2u/(1+cos u)#

You can prove the same starting from RHS too.....