How does one verify #sinx-cscx=-cos^2x/sinx#?

#sinx-cscx=-cos^2x/sinx#

3 Answers
Apr 3, 2018

See below.

Explanation:

It's best to leave one side alone, and simplify another side.

Let's leave the right alone, while simplifying the left.

Recall that #cscx=1/x:#

#sinx-1/sinx=-cos^2x/sinx#

Subtract the expressions on the left, taking #sinx# as the common denominator.

#(sin^2x-1)/sinx=-cos^2x/sinx#

Now, recall the identity

#sin^2x+cos^2x=1#

This identity also tells us that

#sin^2x-1=-cos^2x#. So, we can use this to simplify our numerator on the left:

#=cos^2x/sinx=-cos^2x/sinx#

So, the identity holds true.

Apr 3, 2018

See below

Explanation:

We want to prove that #sinx-cscx=-cos^2x"/"sinx#. We use the following identity

#cscx=1/sinx#

So

#sinx-cscx#

#=sinx-1/sinx#

#=(sin^2x-1)/sinx#

#=-(1-sin^2x)/sinx#

#=-cos^2x/sinx#, as required. #square#

Apr 4, 2018

See method below

Explanation:

#cscx=1/sinx# (definition)

We want to show that #sinx-1/sinx=-cos^2x/sinx#

Since both terms contain #sinx# we can factorize

#sinx-1/sinx = 1/sinx(sin^2x-1)#

Substitute 1 using the identity #1=cos^2x + sin^2x#

#1/sinx(sin^2x-(cos^2x + sin^2x))=1/sinx(-cos^2x)#

#sin^2x# cancels out.

#1/sinx(-cos^2x)=-cos^2x/sinx#

Therefore #sinx-1/sinx=-cos^2x/sinx#