Given that #y = 2/(e^x + e^(-x))#, show that the second derivative is equal to #y - 2y^3#?

1 Answer
Apr 4, 2018

See below

Explanation:

#dy/dx = -2/(e^x+e^-x)^2(e^x-e^-x )= -1/2y^2(e^x-e^-x)#

Differentiating once again, we get

#(d^2y)/dx^2 = -1/2 2y dy/dx(e^x-e^-x)-1/2y^2(e^x+e^-x)#
#qquad =-y(-1/2y^2(e^x-e^-x))(e^x-e^-x) -1/2y^2 2/y#
# qquad = 1/2y^3color(red)((e^x-e^-x)^2)-y#

Now

#(e^x+e^-x)^2-(e^x-e^-x)^2 = 4 implies#

#(2/y)^2-(e^x-e^-x)^2 = 4 implies#

#(e^x-e^-x)^2 = 4/y^2-4#

Thus

#(d^2y)/dx^2 = = 1/2y^3color(red)((4/y^2-4))-y = 2y-2y^3-y#
#qquad = y-2y^3#

Alternately,

Using hyperbolic functions can reduce some of the work here :

#y = sechx implies dy/dx = -sechx tanhx#

#(d^2y/dx^2) = (-sechxtanhx )tanhx-sechx(sech^2x)#
#qquad = -sechx(sech^2x-tanh^2x) #
#qquad = -sechx(sech^2x-(1-sech^2x))#
#qquad = -sech x(2sech^2x-1)#
#qquad = sechx-2sech^3x = y-2y^3#