Find dy/dx when (A) #y= sqrtlnx# , (B) y= arctan 5x ?
1 Answer
(A)
# d/dx sqrtlnx = 1/(2xsqrt(lnx)) # (B)
# d/dx arctan 5x = 5/(25x^2+1)#
Explanation:
We seek the derivatives of:
(A)
#y= sqrtlnx#
(B)#y= arctan 5x #
We require some standard derivatives:
# {: (ul("Function"), ul("Derivative"), ul("Notes")), (f(x), f'(x),), (af(x), af'(x), a " constant"), (x^n, nx^(n-1), n " constant (Power rule)"), (tan^(-1)x, 1/(1+x^2), ), (lnx, 1/x, ), (f(g(x)), f'(g(x)) \ g'(x),"(Chain rule)" ) :} #
Part (A):
Applying the chain rule, we have:
# dy/dx = d/dx sqrtlnx #
# \ \ \ \ \ \ = d/dx (lnx)^(1/2) #
# \ \ \ \ \ \ = 1/2(lnx)^(-1/2) d/dx (lnx)#
# \ \ \ \ \ \ = 1/(2sqrt(lnx)) 1/x#
# \ \ \ \ \ \ = 1/(2xsqrt(lnx)) #
Part (B):
Again, applying the chain rule, we have:
# dy/dx = d/dx arctan 5x #
# \ \ \ \ \ \ = 1/((5x)^2+1) d/dx (5x)#
# \ \ \ \ \ \ = 1/(25x^2+1) 5#
# \ \ \ \ \ \ = 5/(25x^2+1)#