Sin^4x -cos^4x= cos3x Could you solve this?

4 Answers
Apr 5, 2018

#x= pi/5 #
#x = (3pi)/5 #
#x= pi#

Explanation:

We have:

#(sin^2x+ cos^2x)(sin^2x- cos^2x) = cos(3x)#

#1(sin^2x - cos^2x)= cos(3x)#

#-cos(2x) = cos(3x)#

#0 = cos(3x) + cos(2x)#

#0 = cos(2x)cos(x) - sin(2x)sinx + cos(2x)#

#0 = (2cos^2x -1)cosx- 2sinxcosxsinx + 2cos^2x- 1#

#0 = 2cos^3x - cosx - 2sin^2xcosx + 2cos^2x - 1#

#0 = 2cos^3x- cosx - 2(1- cos^2x)cosx + 2cos^2x - 1#

#0 = 2cos^3x- cosx - 2(cosx - cos^3x) + 2cos^2x- 1#

#0 = 2cos^3x- cosx- 2cosx+ 2cos^3x +2cos^2x- 1#

#0 = 4cos^3x + 2cos^2x - 3cosx -1#

Let #u = cosx#.

#0 = 4u^3 + 2u^2 - 3u - 1#

We see that #u = -1# is a factor. Using synthetic division we get

#0 = (x + 1)(4x^2 - 2x - 1)#

The equation #4x^2 - 2x - 1= 0 # may be solved using the quadratic formula.

#x = (2 +- sqrt(2^2 - 4 * 4 * -1))/(2 * 4)#

#x = (2 +- sqrt(20))/8#

#x = (1 +- sqrt(5))/4#

#x ~~ 0.809 or -0.309#

Since #cosx = u#, we get #x = pi/5, (3pi)/5# and #pi#.
Where #n# is an integer.

The graph of #y_1 = sin^4x- cos^4x# and #y_2 = cos(3x)# confirms that the solutions are the intersection points.

enter image source here

Hopefully this helps!

Apr 5, 2018

#x = (2k + 1)pi#
#x = ((2k - 1)pi)/5#

Explanation:

#sin^4x - cos^4 x = cos 3x#
#(sin^2 x + cos^2 x)(sin^2 x - cos^2 x) = cos 3x#
#1(sin^2 x - cos^2 x) = cos 3x#
#-cos 2x = cos 3x#, or
#cos 3x = - cos 2x = cos (2x + pi)#
Unit circle, and property of cos, give -->
#3x = +- (2x + pi) + 2kpi#
a. #3x = 2x + pi + 2kpi#
#x = (2k + 1)pi#
If k = 0 --> #x = pi#
b. #3x = - 2x - pi + 2kpi#
#5x = (2k - 1)pi#,
#x = ((2k - 1)pi)/5#
If k = 1 --> #x = pi/5#.
If k = 0 --> #x = - pi/5#, or #x = (9pi)/5# (co-terminal)
If k = 2 --> #x = (3pi)/5#
In the closed interval [0, 2pi], the answers are:
#0, (pi)/5, (3pi)/5, pi, (9pi)/5#
Check by calculator.
#x = pi/5 = 36^@# --> #sin^4 x = 0.119# --> #cos^4 x = - 0.428# --> cos 3x = - 309.
#sin^4 x - cos^4 x = 0.119 - 0.428 = - 309# . Proved
#x = (9pi)/5# --># sin^4 x = 0.119# --> #cos^4 x = 0.428# -->
#sin^4 x - cos^4 x = - 0.309#
#cos 3x = cos 972 = - 0.309#. Proved

Apr 13, 2018

#rarrx=(2n+1)pi/5, (2n+1)pi # #nrarrZ#

Explanation:

#rarrsin^4x-cos^4x=cos3x#

#rarr(sin^2x+cos^2x)(sin^2x-cos^2x)=cos3x#

#rarr-cos2x=cos3x#

#rarrcos3x+cos2x=0#

#rarr2cos((3x+2x)/2))*cos((3x-2x)/2))=0#

#rarrcos((5x)/2)*cos(x/2)=0#

Either #cos((5x)/2)=0#

#rarr(5x)/2=(2n+1)pi/2#

#rarrx=(2n+1)pi/5# #nrarrZ#

#rarrcos(x/2)=0#

#rarrx/2=(2n+1)pi/2#

#rarrx=(2n+1)pi# #nrarr#

Apr 29, 2018

The general solution doesn't require the triple angle formula, and is

#x=180 ^circ + 360^circ k# or # x = 36^circ + 72^circ k#

for integer #k#.

Explanation:

I don't like reading other people's answers before I solve a question myself. But a featured answer for this one popped up. During my quick glance I couln't help notice it looked pretty complicated for what looks to me like a relatively easy question. I'll give it a shot.

#sin ^4 x - cos ^4 x = cos 3x #

#(sin ^2 x + cos ^2 x)(sin ^2 x - cos ^2 x ) = cos 3x #

#-cos 2x = cos 3x #

#cos (180^circ - 2x) = cos 3x #

I've been on Socratic for a couple of weeks, and this is emerging as my theme: The general solution to #cos x = cos a# is #x = \pm a + 360 ^circ k quad# for integer #k.#

# 180^circ - 2x = \pm 3x + 360^circ k #

# -2x \pm 3x = -180^circ + 360^circ k#

We take the signs separately. Plus first:

# x = -180^circ + 360^circ k = 180 ^circ + 360^circ k#

Minus next.

# -5x = -180^circ + 360^circ k #

# x = 36^circ + 72^circ k#

If you read these closely you might think I'm making a mistake with the way I manipulate #k#. But since #k# ranges over all the integers, substitutions like #k to -k# and #k to k+1# are allowed and I slip those in to keep the signs #+# when they can be.

Check:

Let's pick a couple to check. I'm geeky enough to know #cos 36^circ# is half the Golden Ratio, but I'm not going to work these out exactly, just pop them into Wolfram Alpha to make sure.

# x = 36^circ + 72^circ = 108^circ #

# sin ^4 108 - cos ^4 108 - cos (3 * 108) = 0 quad sqrt#

# x = 180 - 2 (360) = -540 #

#sin ^4 (-540) - cos^4(-540) - cos(3 * -540) = 0 quad sqrt#