We have:
#x=2t-1# and #y=e^t-7#
Let's turn these equations around a bit.
#=>x+1=2t#
#=>(x+1)/2=t#
#=>y+7=e^t#
#=>ln(y+7)=t#
#=>(x+1)/2=ln(y+7)#
#=>e^((x+1)/2)=y+7#
#=>e^((x+1)/2)-7=y#
#=>d/dx(e^((x+1)/2)-7)=d/dx(y)#
Some rules:
#d/dx(e^x)=e^x#
#d/dx(C)=0# where #C# is a constant.
#d/dx(x^n)=nx^(n-1)# where #n# is a constant.
#d/dx(g(h(x))=g'(h(x))*h'(x)#
#=>e^((x+1)/2)*d/dx((x+1)/2)=dy/dx#
#=>e^((x+1)/2)*1/2*d/dx((x+1))=dy/dx#
#=>e^((x+1)/2)*1/2*1*x^(1-1)=dy/dx#
#=>e^((x+1)/2)*1/2*x^(0)=dy/dx#
#=>(e^((x+1)/2))/2=dy/dx#
Now...
If #t=1#:
#x=2*1-1#
#x=1#
#=>(e^((1+1)/2))/2=dy/dx#
#=>(e)/2=dy/dx#