Use these logarithmic properties:
color(blue)(log_e)x=color(blue)(ln)x
log^2x=(logx)^2
log(color(blue)x^color(red)a)=color(red)alogcolor(blue)x
And these exponential properties:
(x^color(red)m)^color(blue)n=x^(color(red)mcolor(blue)n)=(x^color(blue)n)^color(red)m
e^lncolor(blue)x=color(blue)x
Here's the expression:
color(white)=e^(log_e^2 9)
=e^(ln^2(9))
=e^(ln^2 9)
=e^((ln 9)^2)
=e^((ln (3^2))^2)
=e^((2ln3)^2)
=e^(2^2ln^2 3)
=e^(4ln^2 3)
=(e^(ln^2 3))^4
=(e^(ln3*ln3))^4
=((e^(ln 3))^ln3)^4
=((color(red)cancelcolor(black)e^(color(red)cancelcolor(black)cc(ln) 3))^ln3)^4
=(3^ln3)^4
=3^(4ln3)
=(3^4)^ln3
=81^ln3
~~124.93528000...
Hope this helped!