What is int tan^2(2x) sec^4(2x) dx?
2 Answers
Apr 8, 2018
Explanation:
We want to solve
I=inttan^2(2x)sec^4(2x)dx
Rewrite the integrand using the trig identity
color(blue)(sec^2(a)=1+tan^2(a)
Thus
I=inttan^2(2x)(1+tan^2(2x))sec^2(2x)dx
Make a substitution
I=1/2intu^2(1+u^2)du
color(white)(I)=1/2intu^4+u^2du
color(white)(I)=1/2(1/5u^5+1/3u^3)+C
color(white)(I)=1/30(3u^5+5u^3)+C
Substitute back
I=1/30(3tan^5(2x)+5tan^3(2x))+C
Apr 8, 2018
Explanation:
=
if
or
and
=
=
=
=
=