How do you find the derivative of the function: # y = arctan(cosx)#?

1 Answer
Apr 8, 2018

#(dy)/(dx)=(-sinx)/(1+cos^2x)#

Explanation:

WE are given #y=arctan(cosx)#

Let #y=f(x)=arctanx# and #g(x)=cosx#

Then #(dg(x))/(dx)=-sinx# and #y=arctan(g(x))#

and according to chain rule #(dy)/(dx)=(dy)/(dg(x))*(dg(x))/(dx)#

Now as #y=arctan(g(x))#, we have #(dy)/(dg(x))=1/(1+(g(x))^2)#

and as #g(x)=cosx#, #(dg)/(dx)=-sinx#

Hence #(dy)/(dx)=1/(1+(g(x))^2)*(-sinx)#

= #(-sinx)/(1+cos^2x)#