Identities:
#color(red)bb(sin(A+B)=sinAcosB+cosAsinB)#
#color(red)bb(cos(A+B)=cosAcosB-sinAsinB)#
#LHS:#
#sin(x+pi/6)=sin(x)cos(pi/6)+cos(x)sin(pi/6)#
#cos(x+pi/3)=cos(x)cos(pi/3)-sin(x)sin(pi/3)#
#sin(x+pi/6)-cos(x+pi/3)#
#sin(x)cos(pi/6)+cos(x)sin(pi/6)-[cos(x)cos(pi/3)-sin(x)sin(pi/3)]#
#sin(x)cos(pi/6)+cos(x)sin(pi/6)-cos(x)cos(pi/3)+sin(x)sin(pi/3)#
#cos(pi/6)=sqrt(3)/2#
#cos(pi/3)=1/2#
#sin(pi/6)=1/2#
#sin(pi/3)=sqrt(3)/2#
#sin(x)sqrt(3)/2+cos(x)(1/2)-cos(x)(1/2)+sin(x)(sqrt3)/2#
#2sin(x)sqrt(3)/2#
#sqrt(3)sin(x)#
#LHS-=RHS#