How does one prove the following equation? (Image attached for reference)

enter image source here

1 Answer
Apr 8, 2018

See below

Explanation:

Since I'm given 4 blanks, here's my approach:

#tan(theta/2)= sintheta/(1+costheta)#

  1. #sin(theta/2)/cos(theta/2)= sintheta/(1+costheta)#
    Reason: Quotient Identity : #sintheta/costheta= tantheta#

  2. #(sqrt((1-costheta)/2))/(sqrt((1+costheta)/2))= sintheta/(1+costheta)#
    Reason: Half angle Identities : #sin(theta/2)=sqrt((1-costheta)/2)# and #cos(theta/2)=sqrt((1+costheta)/2)#

  3. #(sqrt((1-costheta)/cancel2))*(sqrt(cancel2/(1+costheta)))= sqrt((1-costheta)/(1+costheta))=sintheta/(1+costheta)#

Reason: Division of fractions

  1. #sqrt((1-costheta)/(1+costheta)*(1+costheta)/(1+costheta))= sqrt((1-cos^2theta)/(1+costheta)^2)=sqrt((sin^2theta)/(1+costheta)^2)= sintheta/(1+costheta) #

Reason: Rationalization of the denominator and modified Pythagorean identity: #1-cos^2theta= sin^2theta#