What is the max value?

enter image source here

3 Answers
Apr 9, 2018

The answer is #(2)":- "color(red)(14+5sqrt3#

Check in image...

Explanation:

Put the coordinate #color(red)((0,-2))# on the equation and you will get the value greater than #color(red)(0#. It means the point #color(red)(p(0,-2)# is outside the circle.

Now check...


My notebook...

We determined the value of #bar"PQ"# by distance formula.

Not for JEE level, but a huge calculation. Will try to solve it with shorter method.

For any problem about handwriting , notify me.

:-)

Hope it helps...
Thank you...

Apr 9, 2018

#PQ^2=14+5sqrt3#

Explanation:

enter image source here
given a circle : #x^2+y^2-5x-y+5=0#,
rewrite the equation :
#=> (x-5/2)^2+(y-1/2)^2-25/4-1/4+5=0#
#=> (x-5/2)^2+(y-1/2)^2=3/2#
let #C(x,y) and r# be the center and the radius of the circle, respectively.
#=> C(x,y)=C(5/2,1/2), and r=sqrt(3/2)#
maximum #PQ=PC+CQ=PC+r#
#PQ=sqrt((5/2-0)^2+(1/2+2)^2)+sqrt(3/2)#
#=sqrt(50/4)+sqrt(3/2)#
#=(5sqrt2)/2+sqrt(3/2)#
#=(5+sqrt3)/(sqrt2)#
#=> PQ^2=((5+sqrt3)/(sqrt2))^2=14+5sqrt3#

Solution 2:)
enter image source here
#tana=(5/2)/(1/2+2)=1, => a=45^@#
#Q(x_q,y_q)=(x+rcos45+y+rsin45)#
#=(5/2+sqrt3/sqrt2*sqrt2/2, " "1/2+sqrt3/sqrt2*sqrt2/2)#
#=(5/2+sqrt3/2, ' " 1/2+sqrt3/2)=((5+sqrt3)/2, (1+sqrt3)/2)#
#=> PR=(5+sqrt3)/2-0=(5+sqrt3)/2#
#=> PQ=(PR)/cos45=(5+sqrt3)/2*2/sqrt2=(5+sqrt3)/sqrt2#
#=> PQ^2=((5+sqrt3)/sqrt2)^2=14+5sqrt3#

Apr 9, 2018

Given the equation of the circle #x^2+y^2-5x-y+5=0#.

The standard form of this equation :

#x^2-2*x*5/2+(5/2)^2+y^2-2*x*1/2+(1/2)^2=25/4+1/4-5=3/2#

#=> (x-5/2)^2+(y-1/2)^2=(sqrt(3/2))^2#

So coordinates of its center is #(5/2,1/2)# and its radius #r=sqrt(3/2)#

So coordinates of any point #(Q)# on the circle may be written parametrically as #(5/2+rcostheta,1/2+rsintheta)#

The coordinates of given point #(P)# is #(0,-2)#.

So

#PQ^2=(5/2+rcostheta)^2+(1/2+rsintheta+2)^2#

#=>PQ^2=(5/2+rcostheta)^2+(5/2+rsintheta)^2#

#=>PQ^2=25/4+r^2cos^2theta+25/4+r^2sin^2theta+2*5/2*rcostheta+2*5/2*sintheta#

#=>PQ^2=25/2+r^2(cos^2theta+sin^2theta)+5r(costheta+sintheta)#

#=>PQ^2=25/2+(sqrt(3/2))^2(cos^2theta+sin^2theta)+5sqrt(3/2)*sqrt2(1/sqrt2costheta+1/sqrt2sintheta)#

#=>PQ^2=25/2+3/2*1+5sqrt(3/2)*sqrt2(sin(pi/4)costheta+cos(pi/4)sintheta)#

#=>PQ^2=14+5sqrt3sin(theta+pi/4)#

#=>(PQ^2)_"max"=14+5sqrt3#, as maximum value of #sin(theta+pi/4)# is #1#