What is #int_(0)^(1) (e^(2x) - e^(-2x)) / (e^(2x) + e^(-2x))dx #?
2 Answers
Let
The given integral is,
# int_0^1 \ (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)) \ dx =1/2 \ ln ((e^2+1/e^2)/2) ~~ 0.66250 #
Explanation:
We seek
# I=int_0^1 \ (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)) \ dx #
Noting that:
# sinh(x)=(e^(x)-e^(-x))/2# and# cosh(x)=(e^(x)+e^(-x))/2#
Then we can wrote:
# I=int_0^1 \ sinh(2x)/cosh(2x) \ dx #
# \ \ =int_0^1 \ tanh(2x) \ dx #
# \ \ =[1/2ln(cosh2x)]_0^1 #
# \ \ =1/2{ln(cosh2)-ln(cosh0)) #
# \ \ =1/2{ln((e^2+1/e^2)/2)-ln((1+1)/2)} #
# \ \ =1/2 \ ln ((e^2+1/e^2)/2) #
# \ \ ~~ 0.66250 #