What is #int 16sin^2 xcos^2 x dx #?
2 Answers
# int \ 16sin^2x cos^2x \ dx = 2x - 1/2sin4x + C #
Explanation:
We want to evaluate the integral:
# I = int \ 16sin^2x cos^2x \ dx #
Using the identity:
# sin 2A-= 2sinAcosA #
We can write:
# I = int \ 4*4*(sinxcosx)^2 \ dx #
# \ \ = int \ 4(2sinxcosx)^2 \ dx #
# \ \ = int \ 4(sin2x)^2 \ dx #
# \ \ = int \ 4 sin^2 2x \ dx #
Next we use the identity:
# cos^2x -= cos^2x-sin^2x => sin^2x -= 1/2(1-cos2x) #
So we can write:
# I = int \ 4 sin^2 2x \ dx #
# \ \ = int \ 4 (1/2(1-cos4x)) \ dx #
# \ \ = int \ 2-2cos4x \ dx #
Which we can readily integrate:
# I = 2x - (2sin4x)/4 + C #
# \ \ = 2x - 1/2sin4x + C #