Integrate?

#(2x+1)/(sqrt(1-x^2))dx#

2 Answers
Apr 11, 2018

#int(2x+1)/sqrt(1-x^2)dx# = #int (2x)/sqrt(1-x^2)dx + int 1/sqrt(1-x^2)dx#

# u = 1-x^2#
#du = -2x dx#
#-int u^(-1/2)du + arcsinx + c= -u^(1/2)/(1/2) + arcsinx + c = -2sqrt(1-x^2) + arcsinx + c#

Explanation:

You need to separate the integral first, then do a u-substitution on the side that has a 2x in the numerator and you need to use the arcsin integral trig formula to get the side with a 1 in the numerator.

Apr 11, 2018

Please look below.

Explanation:

#I = int# #(2x+1)/(sqrt(1-x^2))# #dx#

# = int # #(2x)/(sqrt(1-x^2)) + 1/(sqrt(1-x^2))# #dx#

# = arcsin(x )+ int # #(2x)/(sqrt(1-x^2)) # #dx#

#J = int# #(2x)/(sqrt(1-x^2)) # #dx#

Let:

#sin(u)= x#
#cos(u)# #du# = #dx#

#J = int# #(2sin(u)cos(u))/(sqrt(1-sin^2(u)))# #du#

# = int# #(2sin(u)cos(u))/(sqrt(cos^2(u)))# #du#

# = int# #2sin(u)# #du#

#= -2cos(u) + C#

# = -2cos(arcsin(x)) + C#

Therefore:

#int# #(2x+1)/(sqrt(1-x^2))# #dx = arcsin(x) - 2cos(arcsin(x)) + C#

This can be simplified further:

Let #theta = arcsin(x)#:
#sin(theta) = x#
#cos(theta) = sqrt(1-x^2)#

#cos(arcsin(x)) = sqrt(1-x^2)#

Finally:

#int# #(2x+1)/(sqrt(1-x^2))# #dx = arcsin(x) - 2sqrt(1-x^2) + C#