What is #int sin^3x+3sin^2x+2sinx-5 dx#?

2 Answers
Apr 11, 2018

#int (sin^3x +3sin^2x +2sinx -5) dx = -(cosx(2sin^2x +9sinx +16) + 21x)/6 +C#

Explanation:

Using the linearity of the integral:

#int (sin^3x +3sin^2x +2sinx -5) dx = int sin^3xdx +3int sin^2xdx+2 int sinxdx -5 int dx#

Solve the integrals separately:

#(1)#

#int dx = x +c_1#

#(2)#

#int sinxdx = -cosx + c_2#

#(3)#

#int sin^2x = int (1-cos2x)/2 dx #

#int sin^2x = 1/2 int dx -1/2 int cos2x dx #

#int sin^2x = x/2 -(sin2x)/4 +c_3 #

#int sin^2x = x/2 -(sinxcosx)/2 +c_3 #

#(4)#

#int sin^3xdx = int (1-cos^2x) sinxdx#

#int sin^3xdx = int sinx dx + int cos^2x d(cosx)#

#int sin^3xdx = -cosx + (cos^3x)/3 +c_4#

Putting the partial solutions together:

#int (sin^3x +3sin^2x +2sinx -5) dx = -cosx + (cos^3x)/3 + (3x)/2 -(3sinxcosx)/2 -2cosx -5x +C#

#int (sin^3x +3sin^2x +2sinx -5) dx = (cos^3x)/3 -(3sinxcosx)/2 -3cosx - (7x)/2 +C#

#int (sin^3x +3sin^2x +2sinx -5) dx = (2cos^3x -9sinxcosx -18cosx - 21x)/6 +C#

#int (sin^3x +3sin^2x +2sinx -5) dx = (cosx(2cos^2x -9sinx -18) - 21x)/6 +C#

#int (sin^3x +3sin^2x +2sinx -5) dx = (cosx(2- 2sin^2x -9sinx -18) - 21x)/6 +C#

#int (sin^3x +3sin^2x +2sinx -5) dx = -(cosx(2sin^2x +9sinx +16) + 21x)/6 +C#

Apr 11, 2018

There is an error while posting the question. All terms must be multiplied with #dx#, not only the last as given.

Explanation:

The question becomes

#int\ (sin^3x +3sin^2x +2sinx -5) dx#
# =>I= int\ sin^3x\ dx +3int\ sin^2x\ dx+2 int\ sinx\ dx -5 int\ dx#

# =>I= I_1+I_2+I_3+I_4+C#
where #C# is a constant of integration.

Now #I_1=int\ sin^3x\ dx#
# =>I_1= int\ (1-cos^2x) sinx\ dx#

Let us substitute #u=cosx->du=-sinx\ dx#

#=>I_1= int\ (u^2-1)\ du#
#=>I_1= u^3/3-u#

Reversing the substitution we get

#I_1 = (cos^3x)/3 -cosx #

#I_2=3int\ sin^2x\ dx#
#=>I_2 =3 int\ (1-cos2x)/2\ dx #
#=>I_2 =3[ 1/2 int\ dx -1/2 int\ cos2x dx] #
#=>I_2= 3[x/2 -(sin2x)/4 ] #
#=>I_2= (3x)/2 -3/4(sin2x) #

#I_3=2int\ sinx\ dx = -2cosx#

#I_4=-5int\ dx = -5x#

Therefore

#I=( (cos^3x)/3 -cosx)+((3x)/2 -3/4(sin2x))+( -2cosx)+(-5x)+C#
#I=-(9sin2x-4cos^3x+36cosx+42x)/12+C_1#