How do you write #y=x^2-8x+20# into vertex form?
2 Answers
Apr 11, 2018
Explanation:
Apr 11, 2018
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
#"where "(h,k)" are the coordinates of the vertex and a "#
#"is a multiplier"#
#"to obtain this form use the method of "color(blue)"completing the square"#
#• " the coefficient of the "x^2" term must be 1 which it is"#
#• " add/subtract "(1/2"coefficient of the x-term")^2" to"#
#x^2-8x#
#rArry=x^2+2(-4)xcolor(red)(+16)color(red)(-16)+20#
#rArry=(x-4)^2+4larrcolor(red)"in vertex form"#